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Abstract

We present a GPU-based path tracing solution on the Apple Vision
Pro using Metal. Our system extends a thin-lens ray generation
model with per-ray dioptric variation derived from clinical eye pa-
rameters (SPH, CYL, AXIS). Aberrations are modeled by perturbing
each ray’s focal point based on angular lens phase, producing real-
istic defocus patterns.The system was evaluated against complex
scenes derived from Homework 3-2 and extended to the Arnold
render engine to demonstrate scalability and performance. This
work offers insights into the implementation of path tracing solu-
tions on VR hardware and demonstrates the potential for real-time
analysis of vision aberrations.
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1 Introduction

Simulating vision aberrations such as myopia and astigmatism in
immersive environments offers potential benefits for accessibility
research, user empathy tools, and virtual optometric testing. Tra-
ditional vision simulation techniques often focus on screen-space
post-processing, leading to a not fully immersive experience in
understanding these ailments. We create simulators for these aber-
rations that draws from clinical models of refractive error and lens
anatomy to produce convincing results, even across stereoscopic
views.
Our main contributions to computer graphics are the following:
o An extension on top of CS 184/284A’s path tracing project 3!
that allows for visualizations of depth of field and aberration
simulation of scenes from the project.
e An Arnold plugin which create static, high quality renders
with aberrations which runs path tracing on the CPU.

https://cs184.eecs.berkeley.edu/sp23/docs/proj3-2
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o Areal-time physically-based GPU path tracer in Metal which
runs direct on the Apple Vision Pro which supports render-
ing USDZ 3D models, powered by compute shaders/kernels.

e An interactive menu interface on the Vision Pro app that

enables real-time adjustment of aberration/eye parameters,

allowing immediate visualization of how different optical
conditions affect object perception.

The first public real-time GPU path tracer with real-time

aberration simulation running on a commercial AR/VR hard-

ware.

2 Environment Setup
2.1 Capability for Depth of Field

Our camera simulation supports thin-lens DOF by sampling an
aperture disc and shifting ray origins appropriately. Aberration-
specific focal offsets are introduced by modeling dioptric deviations
in the lens.

2.2 CPU and GPU Path Tracing

2.2.1 HWS3and Arnold CPU Rendering. We first start with existing
code from Homework 3’s Path Tracer and Homework 3-2 of Spring
2023, which includes CPU ray generation, intersection, BSDFs, and
extension support for camera Depth of Field (DoF). We built DoF
and aberration simulation on top of the homework for proof of
concept.

We then built on top of Autodesk’s Arnold render engine by
creating a plugin that creates a new custom camera on top of the
engine, adding support for visually abberated simulations. Specifi-
cally, we are seeking high—quality, non-real-time renders.

2.2.2  Vision Pro (Metal) GPU Rendering. We then extended our
results to real-time path tracing on Vision Pro’s Metal-based GPU
pipeline, setting up compute, vertex, and fragment render passes
that support real-time physically-based rendering. Compute shaders
were authored in Metal Shading Language. Our goal was to simulate
abberated vision with high quality passthrough. Additionally, there
are virtually no path tracers on the Vision Pro, and certainly none
with implemented Depth of Field, and was interested in creating a
Metal Path Tracer.

We started with a basic Swift application with a barebones Metal
Renderer, which supports a rendered scene that shows a simple box
mesh running a vertex and fragment shader. On top of this, we built
support on the Renderer to support three compute shaders (also
known as compute kernels in Metal), implemented real-time GPU
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Figure 1: Normal Vision v.s. Astigmatism Abberation

path tracing in Metal on it, along with depth of field and aberration
simulation.

3 Research and Implementation?®
3.1 Literature Review

Our work is informed by Barsky et als vision-realistic rendering,
Nief3ner’s real-time GPU-based simulation of human vision, and
recent work on aberrated human vision rendering (Csoba, I., Kunkli,
R. 2023). Istvan Csoba & Roland Kunkli’s work and Zilong Wang
and Shuangjiu Xiao’s methodology for thin lens approximation
optical simulation were especially helpful in lens calculations.

Myopia and hyperopia are caused by the lens of an eye focusing
light at a point not perfectly on the retina, which is characteristic
of a normal depth of field simulation.

Astigmatism (see Figure 13) is caused by having multiple focal
points in an eye, determined by the primary and secondary merid-
ians on the lens. Here, we assume a 90° angle between the two
meridians for regular astigmatism. Each meridian has a certain
focal power, the primary meridian having a strength SPH + CYL
while the secondary meridian has a strength of SPH. The variables
SPH, CYL, and AXIS are found on a typical glasses prescription and
represent the eye power in diopters needed to correct standard
vision. The result from this is a streaking light image and double
blurring effect.

Figure 2: Optical path of astigmatism

Zhttps://github.com/Cookei/184FinalProject_Submission
3https://eyecandys.com/blogs/news/how-astigmatism-affects-light
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The starting angle offset from the horizontal axis is determined
by the variable AXIS. For an angle principal to a meridian, we focus
perfectly for that meridian’s power. In a raytracing approach, this
constitutes to having two focal points.

With a CYL value of 0, this represents myopic/hyperopic vision
due to both meridians having the same eye power, leading to a
singular focal point.

Standard depth of field sampling creates samples on the lens.
A simple approach would be to uniformly randomly sample r €
[0,1] and ¢ € [0,2x] in polar coordinates. With the angle ¢ we
can interpolate between the two eye powers associated with each
meridian to determine the eyePower. It’s important to note here
that we use a sin squared weighted interpolation instead of a linear
one. This gives us more realistic results that match a toric lens.

eyePower = SPH + CYL - sin? (¢ + AXIS)

f = focalDistance + ————
eyePower

Here, given a target focalDistance, we can use our calculated
eyePower as offsets, since they represent the power needed to
correct normal vision. We convert our eyePower from diopters
to meters and add that to the focalDistance.

With the new focal distance for the ray and can easily raytrace
the scene with pLens_cam — pFocus_cam - f

3.1.1  Weighted Sampling. In Zilong Wang and Shuangjiu Xiao’s
paper for simulating human eye optical systems, they note a more ef-
ficient sampling method that introduces angular and central biasing
for sampling of the lens, leading to better sampling for astigma-
tism due to its inherent asymmetry. A summary of the sampling
technique is noted here. We implemented both uniform and biased
sampling to compare results.

DistantIndex € [0, 1]
AngleFactor = some constant
AngleFactor € [0, AngleFactor]
r = DistantIndex

¢

21

- AngleFactor - (Anglelndex - r)

Figure 3: Biased sampling
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3.2 CPU Pathtracing

3.2.1 Implementing on HW 3-2. To add astigmatic support for the
HW 3-2 depth of field approach, we created a new sampling func-
tion based on the previous approach. This returns a sample in
polar coordinates are that passed into rndR and rndTheta in the
generate_ray_for_thin_lens function.

We calculate the new focal distance for the ray and then use that
to calculate the new ray direction.

3.2.2 Implementing in Arnold. In order to see higher fidelity ren-
ders with support for Arnold shaders, custom meshes, etc, as well
as speed up rendering times, we implement this rendering approach
through a custom Arnold plugin.

Here, we create a custom camera node. Modifying the
create_camera_ray function allows us to manipulate the ray from
the camera. Porting over the code from Hw 3-2, we can calculate
x_sensor_cam = input.sx * tan(hFov * AI_DTOR * 0.5)
where input.sx is the sample point in normalized screen space.
Here we note that although hFov and vFov is noted here, they
actually represent the same Fov value. Having a non-uniform Fov
skews the final render, unlike in Hw-3-2 where there were separate
Fovs for each axis.

Since the Arnold camera outputs the ray, in camera space, we
can get rid of the camera to world space matrix transforms and
instead only operate in camera space.

To give us more flexibility, modifying node_parameters allows
us to add custom sliders to change various variables relevant to the
final render. We can then compile to a .d11 file and use them with
Arnold. Here we did not implement support with a .mtd file for
integration with Maya, but doing so would be simple. Instead we
render directly with Arnold .ass files using kick. So we kick ass!

3.3 GPU Path Tracer - Architecture Overview

3.3.1 The Need for a Display Mesh - Sphere v.s. Plane. On the Vision
Pro, third party developers are not given access to the frame buffer
or fragment shader of the actual screen. Therefore, it is impossible
to run as if the user’s eyes are the screen of the display (as you
would on a computer screen running OpenGL or shadertoy, for
instance). Instead, we are forced to run using a screen mesh in front
of the user and path tracing through it using a shader that runs on
the mesh.

Additionally, to add perspective all around the user, we chose to
use a sphere mesh that encloses the user, much similar to how a
virtual skybox is implemented. This means it is a sphere mesh that
is centered at the user / camera position and is scaled inversely or
inside-out. The sphere then runs a fragment shader that samples
from a path traced texture. Table 1 shows what an example texture
looks like, which is sampled by the sphere for correct perspective.
To apply this projection, we first take the uv coordinates that we
consider, and then transform them to polar and azimuthal angles®.
We then have the following formula to transform them into world
or Cartesian coordinates’:

“https://mathworld. wolfram.com/SphericalCoordinates.html
Shttps://www.scratchapixel.com/lessons/mathematics-physics-for-computer-
graphics/geometry/spherical-coordinates-and-trigonometric-functions.html
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x (horizontal) = cos(¢) sin(0),
z (inwards) = sin(¢) sin(6),
y (upwards) = cos(0)

(a) Spherical Texture
Table 1: Spherical Texture (Left) and Sphere-Sampled (Right)
Cornell Box

(b) Viewed on Sphere Skybox

3.3.2 Compute Shader v.s. Fragment Shader Path Tracing. A prob-
lem with running path tracing in the GPU is that we are unable to
do recursion, as for a limitation in Metal and many other shading
languages. We also cannot create random numbers built-in, which
is used for Monte Carlo termination. We instead do so using Halton
sequence numbers based on which frame (modded by a number
to cap it) the compute shader is currently running. We then imple-
mented the basic logic of the path tracing from homework 3 onto
the shader in the Vision Pro.

The initial Vision Pro Path Tracer we built is ran directly on the
fragment shader of the Sphere. When doing this, we get to employ
the method of knowing where every pixel position in world space,
allowing us to get a ray from the camera to the pixel, and allowing
us to shoot a ray very intuitively through the sphere. However, the
problem with this approach was that it was way too slow. Upon
further research online, it seems that path tracers built in fragment
shaders suffer from this approach, leading most path tracers to be
done in compute shaders. Compute shaders are also much better
than fragment shaders at handling conditional IF statements and
suffer less from conditional branching issues, as it has full control
over memory access patterns and work distribution. While initially
we thought that compute kernels were not accessible to third party
developers, we found very scarce but existent resources that allowed
us to enable this capability .

The methodology to do path tracing on a compute shader is to
perform path tracing using texture coordinates, and then sampling
in the fragment shader after the texture is written to. The compute
shader performs path tracing in the GPU and writes it into a CPU
texture, which then gets sampled by the fragment shader in the
GPU. This takes a bit of overhead, but in exchange, we get some
performance benefits. Our path tracing algorithm takes advantage
of the compute shader’s explicit thread organization: uint2 gid
[[thread_position_in_grid]]. This allows direct control over

®https://developer.apple.com/documentation/realitykit/generating-interactive-
geometry-with-realitykit
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thread allocation and work distribution. Unlike fragment shaders
which are tied to the rasterization pipeline and process one fragment
at a time, compute shaders can skip rendering for out-of-bounds
pixels with simple early-exit conditions.

3.3.3  Path Tracing Algorithm and BSDF Considerations. For light
transport, we implemented direct and indirect illumination differ-
ently. The Metal version uses explicit light sampling in its pathTrace
function with a single light sampling loop per bounce, whereas the
C++ version on Homework 3 separates these concerns into multi-
ple functions. Our GPU implementation also incorporates Russian
Roulette termination after several bounces to improve efficiency,
similar to the CPU version but implemented directly in the main
path tracing loop. A significant difference is our scene representa-
tion - the Metal version uses a flat array of triangles passed from
Swift, whereas the CPU implementation relies on a BVH accelera-
tion structure. This simplified approach works well for our smaller
scenes but sacrifices the performance benefits of spatial acceleration
structures.

As with the Hw 3 code, the material of our object affects two
things: 1) the contributions of light given an input and output ray
direction and normal for a material (evaluateBRDF in code) and 2)
the bias that we sample for each next ray after a bounce on that
material (sampleDirection in code). Unlike the CPU implementa-
tion which uses separate BSDF classes, our Metal version employs
a more unified and simplified material system with three primary
material types (diffuse, metal, and dielectric) directly encoded in the
shader. We then implemented the two main functionalities for each
of these three BSDFs, which approximate physically based material
behavior. We then created a USDZ’ parser, and we classify triangles
as one of the material types based on its extracted properties.

3.4 BSDF Evaluation and Sampling Equations

Given the input and output ray directions @;, @ we evaluate the
BSDFs. When calculating for the next ray after a bounce, we sample
based on the BSDF given the input ray direction and the normal
of the point where the ray intersects an object and use that as our
new &,. We also importance sample based on lights to calculate
direct lighting at every bounce.

3.4.1 Diffuse. For diffuse materials, we implemented a Lambertian
reflection model with cosine-weighted hemisphere sampling®:
- = P
fr(@i,00) = =
T

Where p is the albedo.

3.4.2 Metallic. For metal surfaces, we implemented a simplified
model based on perturbed perfect reflections for sampling:
oo = reflect(d;, i) + af

Where «a is the roughness parameter, 7 is a random unit vector, and
the reflected direction is computed with the standard reflection
equations:

reflect(&;, ) = &; — 2(&; - n)n
7A 3D scene file exchange format created by Pixar

8https://computergraphics.stackexchange.com/questions/4394/path-tracing-the-
cook-torrance-brdf
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This is a simplified but computationally efficient approach to
microfacet-based reflection °. What we are doing is basically to get
a ray perturbed a little bit from the specular reflection direction °.

The BRDF component combines base reflectance with a specular
term and we just interpolate by a reasonable amount. This makes
sense because the resulting color is made up of the base color along
with a contribution from the specular term, where the specular
term is some power of alignment of the reflected ray to @y:

fr (&4, &0) = p - (0.2+0.8 - specular)

3.4.3 Dielectric. The results of this implementation can be found
in part (e) of Figure 4, where the walls at the back of the Cornell Box
are glass like (they are dielectric). A full implementation tutorial of
Dielectric materials for Ray Tracing was used to implement ours 1.
The idea is that we first calculate the Fresnel term using Schlick’s

approximation:
Fr(6) = Fo + (1 - Fy)(1 — cos 6)°

Where Fy = 0.2 in our implementation. We can easily calculate cosy
as |11 - @o|. The sampling probability for whether the scattered ray
is reflected or refracted is directly based on this Fresnel term:

P(reflection) = F,-(0)
Finally, our dielectric BRDF accounts for the Fresnel effect:

fi(83,80) = albedo * fresnel = p - (0.2 +0.8 - (1 — |7 - Bo|)°)

4 Compute Pipeline for Path Tracing on Metal

Our rendering system uses a three-stage compute pipeline to maxi-
mize image quality while maintaining interactive frame rates on
Vision Pro hardware. Using compute kernels give us this flexibil-
ity. We have three compute passes that outputs a final texture
that is then read by the fragment shader ran on the sphere pre-
viously discussed. Our approach is inspired by NVIDIA’s paper
12 which uses temporal accumulation of samples per frame and
applying a denoising filter on top of it. A large amount of unforgiv-
ing and time-consuming setup (dispatchComputeCommands etc)
on the CPU Renderer side was required to get implement these
passes correctly.

4.0.1 Path Tracing Compute Pass. The primary compute kernel
(pathTracerCompute) generates raw path-traced samples at a con-
figurable resolution. This kernel processes one ray per thread in a
32x8 threadgroup configuration for optimal cache utilization and
finally writes to a dedicated RGBA32F texture on CPU that captures
single-sample radiance values. However, these single samples are
noisy. We don’t have the flexibility to easily do multiple samples like
we do on CPU, so instead we bypass this limitation by accumulating
the results.

“https://graphicscompendium.com/gamedev/15-pbr
Ohttps://stackoverflow.com/questions/32077952/ray-tracing-glossy-reflection-
sampling-ray-direction
https://viclw17.github.io/2018/08/05/raytracing-dielectric-materials
2https://research.nvidia.com/labs/rtr/publication/schied2017spatiotemporal/
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4.0.2  Accumulation Compute Pass. The second compute kernel
(accumulationKernel) performs temporal accumulation to pro-
gressively reduce noise. We hope to essentially average the values
over multiple samples. The kernel combines the current sample with
previously accumulated samples using a running average. To do
this, we use a numerically stable accumulation formula 13, new_avg
= old_avg + (new_sample - old_avg) / sample_count, and
automatically reset accumulation when camera movement is de-
tected so there are no incorrect overlays of views. However, these
results are still quite noisy across different pixels.

4.0.3 Denoising Compute Pass. We implemented a denoising filter
which was implemented before in CUDA 4 which is based the
a research paper 1> "Edge-Avoiding A-Trous Wavelet Transform
for fast Global Illumination Filtering". This filter implements a
5 X 5 kernel based on B3-spline interpolation applied in an A-trous
style with iteratively increasing step widths. Our result is that we
get edge-preserving filters, so our path traced results still look
sharp at their edges while it’s high frequency noise is removed. We
translated this to fit our needs for our Metal renderer. Our results
pre-denoising and post-denoising can be seen in Table 2.

(a) Noisy (1 spp)
Table 2: Comparison before and after compute pass

4.1 Metal GPU Data Structures

4.1.1 USDZ Parsing. To extend our path tracing functionality, we
implemented a USDZ parser with the help of online sources in Swift,
which we then pass down as triangles to the GPU with properties
including emission, color, vertex positions, roughness, and material
type (dielectric/diffuse/metal). We first used an exising Swift/Metal
API that converts USDZ models to Metal formed Mesh objects.
These objects contain submeshes, vertex buffers, vertex strides, and
vertex data. Each submesh is mapped to a single material, which we
determine it’s type via testing based on diffuse, metal, and index
of refraction properties encoded in the USDZ (if it is provided).
We add pretty low-level accesses into raw pointers using these
structures to extract the positions of the every submesh’s triangles.
They are extracted from a flat array, we apply any transforms, then
convert them into an array of our Triangle data structure. These
Triangles are then converted to GPUTriangles that we pass to
the GPU.

Bhttps:/jvminside.blogspot.com/2010/01/incremental-average-calculation.html
https://toytag.net/posts/pt-denoiser/
Shttps://jo.dreggn.org/home/2010_atrous.pdf

(b) Denoised with A-Trous filter
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4.1.2  Metal-Specific Memory Considerations. One of the challenges
when implementing the Triangle data structure to pass down the
GPU was managing the tradeoff between memory bandwidth and
alignment patterns. When designing GPU data structures in Metal,
the choice between packed float representations (such as
packed_float3) and aligned float types (such as float3) presents
an important performance consideration. This decision impacts
both memory usage and access patterns, particularly when dealing
with large triangle meshes required for path tracing.

Packed float types in Metal provide memory savings by eliminat-
ing padding bytes. For instance, a packed_float3 occupies exactly
12 bytes (3 = 4 bytes), while a standard float3 typically consumes
16 bytes due to alignment requirements. When storing geometry
data for complex scenes with thousands or millions of triangles,
this 25% reduction in memory footprint can significantly improve
memory bandwidth utilization. This would be extremely useful for
allowing us to render complex scenes with many, many triangles.

We implemented both. However, we decided to focus on smaller
scenes without acceleration structures makes aligned floats the
more practical choice. We avoid the complexity of handling un-
aligned memory access patterns and potential byte-addressing is-
sues (which we attempted, with the cost of convoluting our code
logic), and we keep memory access benefits for our compute-bound
workload, where each triangle may be accessed multiple times
during ray traversal and intersection testing

4.2 GPU Depth of Field and aberration
Simulation on Metal

Our pathTracerCompute Metal kernel samples ray directions start-
ing from the spherical coordinate UVs from the compute pass, which
we then transform to world coordinates. This gives us an origin
at the camera and a direction to the sample point on our sphere.
Normalizing this is how we raytrace normally, however, for depth
of field we need points along a given sensor.

We can define a sensor by stepping forward one unit in the di-
rection of the initial ray. Since this comes from the sampling of
the sphere from the vision pro on compute, this already takes into
account the FOV of the camera. With this sensor position, we can
proceed as before to calculate our lens weighted ray direction based
on our lens prescription parameters SPH, CYL, and AXIS. It is im-
portant to make sure to transform the coordinates to camera space
before doing the sensor to focal point calculation. The resulting
rays are transformed into world space and used in scene traversal
and shading.

5 Results

5.1 Simulating aberrations on Vision Pro
(Real-Time Results)

We can compare 4 different configurations between scenes: no DOF,
thin-lens DOF, DOF with aberration (myopia and astigmatism). See
Figure 4 1 17 1t is to note here that an astigmatic render produced
a doubling affect in one direction defined by the AXIS. This mimics

L6https://sketchfab.com/3d-models/cornell-box-original-
0d18de8d108c4c9cab1a4405698cc6b6
https://sketchfab.com/3d-models/brown-bunny-crossy-road-
c7b92c46ae2e4ba08b46384000280be2
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(a) No DOF (b) Thin-Lens DOF
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(d) Astigmatism

(c) Myopia

(e) No DOF (f) Thin-Lens DOF

(g) Myopia (h) Astigmatism

(i) No DOF

(j) Thin-Lens DOF

(k) Myopia (1) Astigmatism

Figure 4: Comparison of depth-of-field and aberration configurations across three scenes.

both the the lens equations and real life experiences. It is most
prominent when examining the light, just like in real life. When
rendering with a point light and exaggerate the CYL effects, we can
see the streaking of light in real-time, such as in this result ??.

5.2 High Quality Renders (Arnold)

We start with a very simple scene, which shows the exagerrated
light streaking effects of severe astigmatism 7. We then render a
bedroom scene!®. We begin by showing both a standard pinhole
camera render (lensRadius = 0). Areas of interest has been en-
larged. Additionally, the camera is set to focus on the lamp (as
demonstrating in the standard depth of field render). In the com-
parison between the uniform vs biased sampling, we did not notice

18"ROOMV1352233754567" (https://skfb.ly/puTét) by tokoissick is licensed under Cre-
ative Commons Attribution (http://creativecommons.org/licenses/by/4.0/)

any noticeable improvements. Additionally, it’s noted that there is
a substantial amount of noise for the light streaks.
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Figure 5: Lights Streaking on a Vision Pro Rendering of the
Cornell Box

Figure 7: Simple Scene Simulating Astigmatism

It is noted here in this image that the light is placed behind the
cube in space. This demonstrates the observed behavior of lights
streaking across objects in front of it, as this is a function of the
camera samples directly sampling the light source.

5.3 Problems Encountered

5.3.1 Vision Pro Problems. High Quality Renders on the Vision Pro
were too computationally expensive, so we settled on processing
more complicated scenes using Arnold. Metal supports accelerated
Ray Tracing structures, but they are not available on the Vision Pro
as they have not been made compatible. A potential extension is to
implement our own acceleration structures on CPU and traverse
them in the GPU shaders. Additionally, converting clinical parame-
ters (diopters) into usable focal lengths required approximation.

Conference’17, July 2017, Washington, DC, USA

One of the difficulties with our current approach is that there are
many reads and writes from the CPU, as each texture result between
each compute pass is read and written to between GPU and CPU,
which is expensive. This can actually change if we take advantage of
Apple GPU’s Tile Based Architecture by implementing Tile Shading.
Tile Shading stores the textures as colors in tile memory lying in
GPU units instead of CPU, and having all render and compute passes
access that memory'®. This will complicate our implementation
significantly; we failed to implement this correctly in time.

Another challenge was the limitations of the headset hardware.
There are jaggies on the object because the number of pixels on the
Vision Pro is so high compared to what we can render in real time.
These jaggies disappear on the simulator on a computer screen.
Additionally, since the human head is moving slightly all the time,
our accumulation shader gets reset too often, which results in
fireflies constantly while wearing the device, which disappear on
the simulator where the user can be completely static.

5.3.2  CPU Rendering Problems. It’s noted that the light streaks are
caused by camera samples. As such, this leads to a really noisy image
unless the sample counts are cranked up a lot, which increases
render times across the entire scene. A better sampling approach
could possibly be taking to reduce noise.

Additionally, since we cannot model eye accommodation, we
approximated it using a predefined focalDistance and added the
eyePower to it to simulate it. In real life, the eyePower of each
meridian is preset and the focalDistance is a function of the
accommodation of the eye. It was difficult to find a formula that
worked in a path tracer that was as accurate as possible.

6 Conclusion and Future Work

There are many optimizations that can be done to the Vision Pro’s
path tracer. Some of these include implementing acceleration data
structures for path tracing, implementing our render and compute
passes in one encoder that takes advantage of Tile Shading. Future
work might include applying these aberration simulations to real-
world objects seen and scanned in the Vision Pro.

Furthermore, this current approach only supports regular astig-
matism in which the meridians are 90 deg perpendicular to each
other. An additional modification of the lerping function could
accommodate irregular astigmatism as well. With our current ap-
proach of projecting the focalPlane forward based on the sensor
location and the focalDistance, and then calculating the ray from
the lens to the focal point, it lacks the ability to trace scenes accu-
rately for negative focal distances. This creates an inability for our
current implementation to render hyperopia. However, a modifica-
tion to the final ray direction algorithm can fix it.

7 Contributions

e Brayton Lordianto: I was heavily involved and worked on all
the implementation, research, and testing of the Metal Path
tracer (including materials BSDFs, Metal coding, Renderer
changes, Compute shaders and more) and contributed to
implementing depth of field and aberration simulation in
Metal.

https://developer.apple.com/videos/play/tech-talks/604/
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(a) Reference Render (b) 10 lensRadius, 0 SPH, 0 CYL

(c) lensRadius 0.01, 0 SPH, 0 CYL (d) lensRadius 0.01, 1.5 SPH, 0 CYL

(e) lensRadius 0.01, 0 SPH, -2.5 CYL (f) lensRadius 0.01, 1.5 SPH, -2.5 CYL

(g) lensRadius 0.01, 1.5 SPH, -2.5 CYL, biased sampling (h) lensRadius 0.01, 1.5 SPH, -2.5 CYL, 30 AXIS

Figure 6: Comparison of different prescription and sampling methods

e Han Li: I was primarily involved in the vision research for in Hw 3 and Arnold renderer. I also integrated the astigma-
eyes and lenses, as well as implementing the CPU algorithm tism and dynamic focal distance algorithm into the Metal
compute shader.
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o William Wu: I also worked on the vision research and spear-
headed the understanding and implementation of the mathe-
matical formulations for the depth of field and visual aberra-
tion simulation. I was involed with implementing the depth
of field and anisotropic focal distances on top of Hw3 as well
as debugged the simulation in the Arnold renderer, and in
the Metal version.

o Ricardo Blanco: I assisted with the porting of DOF logic with
support for aberrations from Homework 3-2 into the metal
shader that Brayton built up and worked on all deliverables.
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